MATH 347H: FUNDAMENTAL MATHEMATICS, FALL 2017

PRACTICE PROBLEMS FOR MIDTERM 2

1. Equivalence relation generated by a collection of sets. Let *X* be a set and let $C \subseteq \mathscr{P}(X)$ be a collection of subsets of *X*. Define a binary relation E_C on *X* by

$$xE_{\mathcal{C}}y :\Leftrightarrow \forall S \in \mathcal{C} (x \in S \Leftrightarrow y \in S).$$

- (a) Prove that $E_{\mathcal{C}}$ is an equivalence relation.
- (b) Determine $E_{\mathcal{C}}$ explicitly for the trivial cases: $\mathcal{C} = \emptyset$ and $\mathcal{C} = \mathscr{P}(X)$.
- (c) As a concrete example, let $X := \mathbb{R}$ and let C be the collection of all open intervals with integer endpoints, i.e.

$$\mathcal{C} := \{ (n, m) : n, m \in \mathbb{Z}, n < m \}.$$

Explicitly describe the equivalence classes of $E_{\mathcal{C}}$.

2. Equivalence relations induced by functions.

(a) For a function $f : X \to Y$, define a binary relation E_f on X by

$$x_0 E_f x_1 :\Leftrightarrow f(x_0) = f(x_1).$$

Prove that E_f is an equivalence relation. We call it the equivalence relation induced by f.

- (b) Let $E_{\mathbb{Z}}$ be the binary relation on \mathbb{R} defined by $xE_{\mathbb{Z}}y :\Leftrightarrow x y \in \mathbb{Z}$. Prove that $E_{\mathbb{Z}}$ is an equivalence relation and find a function $f : \mathbb{R} \to [0, 1)$ such that $E_{\mathbb{Z}} = E_f$.
- (c) More generally, for any equivalence relation *E* on a set *X*, find a set *Y* and a function $f : X \to Y$ such that $E = E_f$.

Hint. Quotient by *E*.

- **3.** Prove that there is no $q \in \mathbb{Q}$ with $q^2 = 3$. Informally speaking, the question asks to prove that $\sqrt{3}$ is not rational.
- 4. Let *x* be a symbol for a variable (with no meaning); we call it an *indeterminate variable*. For a commutative ring $(R, +, \cdot, 0_R, 1_R)$, a *polynomial* over *R* is an expression of the form $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where $n \in \mathbb{N}$, for each $i \le n$, $a_i \in R$, and either $a_n \ne 0_R$ or n = 0. If $a_n \ne 0_R$, we say that the *degree* of this polynomial is *n*; otherwise (i.e. when n = 0 and $a_0 = 0_R$), the *degree* is declared $-\infty$.
 - (a) Letting R[x] denote the set of all polynomials (of all degrees), define binary operations + and \cdot on R[X] to make it into a ring.
 - (b) Prove that R[x] is a domain if and only if R is a domain.

- **5.** Let $F(\mathbb{Q})$ denote the set of all functions $\mathbb{Q} \to \mathbb{R}$, so each element $f \in F(\mathbb{Q})$ is a function from \mathbb{Q} to \mathbb{R} . Define a function $\delta_0 : F(\mathbb{Q}) \to \mathbb{R}$ by mapping each $f \in F(\mathbb{Q})$ to its value at 0, i.e. $\delta_0(f) := f(0)$. This function is called the *Dirac distribution* at 0.
 - (a) Prove that δ_0 is surjective.
 - (b) Explicitly define two distinct right-inverses for δ_0 .
 - (c) Letting $M_{<}(\mathbb{Q})$ be the subset of $F(\mathbb{Q})$ of all strictly increasing functions, determine the sets $\delta_0(M_{<}(\mathbb{Q}))$ and $\delta_0(M_{<}(\mathbb{Q})^c)$.
 - (d) Determine the set $\delta_0^{-1}(\mathbb{Z})$.
- **6.** Let $F(\mathbb{R})$ denote the set of all functions $\mathbb{R} \to \mathbb{R}$. The composition $f \circ g$ of two functions $f, g \in F(\mathbb{R})$ is a binary operation on $F(\mathbb{R})$. Determine whether
 - (a) ∘ is associative;
 - (b) o is commutative;
 - (c) there is a \circ -identity;
 - (d) every $f \in F(\mathbb{R})$ has a \circ -inverse.

Prove each of your answers. If an answer is negative, provide an explicit counterexample.

- 7. For a set *A*, write down all of the equivalent conditions you know for *A* to be finite (including the definition). Prove that all of them are equivalent to each other.
- 8. Prove all versions and corollaries of the Pigeonhole Principle on your own.
- **9.** For sets *A*, *B*, recall that we write $A \cong B$ to mean that there is a bijection $A \xrightarrow{\sim} B$; in this case, we say that *A* and *B* are *equinumerous*. Prove that the following sets are equinumerous with \mathbb{N} .
 - (a) \mathbb{N}^+ .
 - (b) The set of all odd numbers natural numbers;
 - (c) **Z**;
 - (d) The set of all integers divisible by 6;
 - (e) \mathbb{N}^2 ;
 - (f) \mathbb{N}^7 .